The Tech Behind LLMs
Do you often use AI but never really know what it does with your prompt? 🤔 Let’s dive a bit into the tech behind it — the Transformer inside LLMs (Large Language Models).
The video below breaks it down step by step, showing what’s really going on during an AI’s “thinking” process 🧠. This is the core engine behind tools like ChatGPT, Gemini, and other Generative AI.
But here’s the big question: do they actually think... or are they just predicting words? 🤖
Watch the video below to find out! 🎥
RingkasanSummary
IlustrasiHow Caraa EksekusiTransformer Executes Your Prompt oleh si-Transformer(Illustration)
PotongFirst,dulusplit → “token”tokens”Kalimat yang sudah kitaYour promptdipecahisjadibrokenpotonganintokecilsmall pieces (token)tokens).-
UbahTurntokentokensjadiintoangkanumbers → “embedding”embeddings” (mempetakanmapmakna)the meaning)SetiapEach tokendipetakaniskemappedsebuahtovektora vector (daftaraangka)list of numbers).KataWordsyangwithmiripsimilarmaknameaningsletaknyaendberdekatanupdiclose together in a very high-dimensional “ruang”space.”berdimensi sangat tinggi.(Contoh:Example: GPT-3memakaiuses12.12,288dimensidimensionsuntukforembedding.its embeddings.) -
Attention =
lampuasorotcontextkonteksspotlightContohnyaWordsmisal kata-katalike “ngobrol”chatting”salinginformmemberieachinformasi,other; the word “mole”diinkalimat biologibiology ≠“mole”diinkimia/penyakitchemistrykulit,/attentionskinmenyesuaikandisease.maknaAttentionsesuaiadaptstetanggathekatanya.meaningIntinya:based on neighboring words. In short: the modelmenyorothighlightsbagianthekonteksmostyangrelevantrelevancontextsebelumbeforememperbaruiupdatingmaknaakataword’situ. - representation.
Feed-forward =
cekfastcepatparallelparalelchecksSetelahAfterdisorot, tiap vektor melewatibeing “pemeriksaan”spotlit,”paraleleach vector goes through parallel “checks” (a multi-layer perceptron)untuktomemperkayaenrichdetail.details.LapisanAttentionattention danand feed-forwardditumpuklayersberkali-kali,aredistackedsinilahmany times—this stacking is the “deep”padain deep learning. -
PilihPickkatatheberikutnyanext word → softmax & “temperature”DiAtakhir,the end, the modelmenghasilkanproducesdistribusiapeluangprobabilitysemuadistributiontokenoverkandidat.all candidate tokens. Softmaxmembuatnyaturnsjadiscoresprobabilitas,into“temperature”probabilities;bisatemperaturemembuatcankeluaranmakelebihoutputsamansafer/calm (dingin)cool)atauorkreatifmore creative (hangat)warm). -
SkalaScaleituiskuncithe keyModelModernmodernmodelsbesararesekali:huge:175e.g.,miliar175Bparameterparameters (contohGPT-3).BanyakAparameterlotjustruofadaparametersdiactuallyblok-bloklivediinantaratheattention.feed-forwardKekuatanblockstransformerbetweendatangattentiondarilayers.paralelismeTransformerssehinggagetbisatheirdilatihpowerpadafromGPUparallelism,dalamenablingskalatrainingsuperonbesar.GPUsArsitekturatinimassivelahirscale.dariThis architecture comes from the 2017 paper2017“Attention Is All YouNeed”.
Ilustrasi
Visual Rapat Meja Bundar: setiap kata mengajukan pertanyaan (query) “siapa yang relevan buatku?” dan yang relevan mengangkat tangan (key) lalu berbagi isi (value). Hasilnya: makna kata makin spesifik sesuai konteks.Kamus 3D Raksasa: kata = titik di ruang besar. “Ratu” dekat dengan “raja”, tapi bergeser arah “perempuan vs laki‑laki”. (Ilustrasi; kenyataan lebih kompleks.)Termometer Kreativitas: temperature tinggi = ide unik; rendah = jawaban rapi/aman.
Kekuatan vs KeterbatasanAnalogies
Kuat:Roundtable Meeting: ringkasevery teks,word menjelaskanasks, konsep,“who’s relevant to me?” (query). Relevant words raise their hands (keys) and share their content (values). Result: each word’s meaning becomes more specific to its context.
Giant 3D Dictionary: words = points in a huge space. “Queen” sits near “king,” but also shifts along a “female vs. male” direction. (Illustration; reality is more complex.)
Creativity Thermometer: higher temperature = more unusual ideas; lower = safer/cleaner answers.
Strengths vs. Limitations
Strengths: summarizing text, explaining concepts, brainstorming ide,ideas, menulisdrafting, draf,light menerjemah ringan.translation.Terbatas:Limitations: bisacan sangatsound meyakinkanconfident saatwhile salahbeing wrong (halusinasi)hallucinations), biasinherits dari training-data latih,biases, tidakdoesn’t “mengerti”understand” duniathe sepertiworld manusia,like sensitifhumans, padasensitive carato kitaprompt memberi instruksi (prompt).wording.
Do & Don’t
Do
TulisStatetujuangoal &peranroledengan jelasclearly (format,gaya,style,batasan)constraints).VerifikasiVerifyangka/faktaimportantpentingnumbers/factssebelumbeforedipakai.using them.SimpanKeepjejakaprompttrail of key prompts &hasil penting.outputs.MulaiStartdariwithuse‑casesmallkecil:useringkascases:email,summarizeoutlineemails,presentasi,createidepresentationawal.outlines, seed ideas.
Don’t
MenempelkanPastedatasecret/sensitiverahasia/sensitif.data.Menganggap hasilAssume AIselaluisbenar.always correct.BergantungRelytotalontanpaitnalarblindly without reasoning &pengecekan.checks.
LessonLessons learnedLearned
1)Don’tJanganidolizemendewakanit-—anggapthink of AIsebagaias a “kalkulatorlanguagebahasa”calculator.”
It’s great at arranging words and patterns, not “understanding” like humans. It can be very convincing even when wrong. You still need human reasoning & verification. (The video focuses on next-token prediction mechanics, not absolute factual truth.)- Context is king.
Good results come from clear context: define the AI’s role, your goal, constraints, and output format. Clear prompts → attention aims at the right info. (Matches the idea of attention selecting the most relevant signals.) - Bigger ≠always the answer.
Larger often helps, but costs more and doesn’t erase bias. Use models proportionally to the task. - Safe & healthy AI
pintarhabitsmenyusun(forkatabeginners):
- Protect
pola, bukan “mengerti” seperti manusia. Iasangat meyakinkanprivacy:saatdon’tsalah.pasteTetap perlukan nalar & verifikasi manusia. (Video menunjukkan fokus ke mekanisme prediksi berikutnya bukan kebenaran faktual absolut)secrets. 2) Konteks itu rajaHasil baik lahir dari konteks yang jelas: siapa peran AI, apa tujuan, batasan, dan format. Bahasa prompt yang jernih = perhatian (attention) tepat sasaran. (Selaras dengan konsep attention yang memilih info paling relevan.)
critical3) Skala besar ≠selalu jawabanLebih besar sering lebih ampuh, tapi butuh biaya dan tidak menghapus bias. Gunakan AI dengan ukuran & cara yangproposionalVerify:dengandouble-checktugas.4)factsPraktikforamanserious&decisions;sehatgetpakai AI (untuk pemula):Jaga privasi: jangan tempel data rahasia.Verifikasi: cek fakta penting untuk keputusan serius, wajiba second opinion.JejakLeavejelasa trace::simpansavecatatan promptprompts &versioutputhasil.versions.- Red-flag
rutinroutine::jikaifhasilitterlalulooksmulus,tooceksmooth,ulangre-checksumbersources &angka.numbers.
5)GroundedCarawaysmulaitoyang membumi:start:
Pakai- Use AI
untuktoringkassummarizeemail/dokumenemails/docs &bikingeneratedaftarideaide.lists. MintaAskoutlineforpresentasi,alalupresentationisioutline,detailnya.then fill in details.MintaAskcontoh formatfor templatelaluexamples,sesuaikan.then adapt.LatihanPracticecek-fakta:fact-checking:tanyakanasksumber,forbandingkansources,manual.compare manually.BuatMakedaftara personal “boleh/tidak”allow/avoid”pribadilist (apawhat’syangsafeamantodiprosesprocess with AI).
- Use AI
SikapMovingkeForwarddepan:- Pro-human, pro-
tooltool::gunakanuse AIuntuktomempercepatspeeddraftupawal,first drafts, brainstorming,atauandpenjelasanconceptkonsep,explanations—finalfinalisasidecisionstetapstaydiwithtangan kita.us. JikaIfinginyoumemahamiwantmendalamdeeperbelajarlahunderstanding,sedikitlearndemigradually:sedikit:grasppahamitheistilahcoreintiterms (token, embedding, attention, softmax).—enoughCukuptountuklevelnaikupkelas literasi AI.Ikuti arsitektur, bukan hype: tahu bahwa lompatan besaryour AImodernliteracy.- Follow
datang darithetransformerarchitecture, not the hype: know that modern AI’s big leap came from transformers (2017)danandsifatnyatheiryangparallelparalelnature—thismenolonghelpsuntukyoumemilahseparatemanamarketingklaimclaimspemasaran,frommanarealkemajuanarchitecturalarsitektural nyata.progress.
- Protect